Disruption of axonal transport leads to a disorganized distribution of mitochondria and other organelles and is thought to be responsible for some types of neuronal disease. The reason for bidirectional transport of mitochondria is unknown. We have developed and applied a set of statistical methods and found that axonal mitochondria are uniformly distributed. Analysis of fast axonal transport showed that the uniform distribution arose from the clustering of the stopping events of fast axonal transport in the middle of the gaps between stationary mitochondria. To test whether transport was correlated with ATP production, we added metabolic inhibitors locally by micropipette. Whereas applying CCCP (a mitochondrial uncoupler) blocked mitochondrial transport, as has been previously reported, treatment with antimycin (an inhibitor of electron transport at complex III) caused increases in retrograde mitochondrial transport. Application of 2-deoxyglucose did not decrease transport compared with the mannitol control. To determine whether mitochondrial transport was correlated with mitochondrial potential, we stained the neurons with the mitochondrial potential-sensing dye JC-1. We found that ∼90% of mitochondria with high potential were transported towards the growth cone and ∼80% of mitochondria with low potential were transported towards the cell body. These experiments show for the first time that a uniform mitochondrial distribution is generated by local regulation of the stopping events of fast mitochondrial transport, and that the direction of mitochondrial transport is correlated with mitochondrial potential. These results have implications for axonal clogging, autophagy, apoptosis and Alzheimer's disease.
Axonal mitochondrial transport and potential are correlated
Kyle E. Miller, Michael P. Sheetz; Axonal mitochondrial transport and potential are correlated. J Cell Sci 1 June 2004; 117 (13): 2791–2804. doi: https://doi.org/10.1242/jcs.01130
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).