We previously reported the existence of Bb-cadherin, a molecule related to classic cadherin, in the cephalochordate amphioxus (Branchiostoma belcheri). The structure of Bb-cadherin is unique in that it lacks the cadherin extracellular repeats, although its cytoplasmic domain shows close similarities to those of typical classic cadherins. The extracellular region of Bb-cadherin consists of laminin globular domains and a cysteine-rich EGF-like domain that are similar to domains in nonchordate classic cadherins. In this study, we identified a second amphioxus cadherin. It was designated Bb2-cadherin (Bb2C) while the previously reported cadherin has been renamed Bb1-cadherin (Bb1C). Bb2C is very similar to Bb1C in its overall structure and amino acid sequence. Genomic BLAST searches and phylogenetic analyses suggested that these two amphioxus genes have been generated through a gene duplication that occurred after separation of the cephalochordates from the other animals. They also bear distinct adhesive specificities. Immunohistochemical analyses showed that Bb1C and Bb2C, together with β-catenin, appear to function as adherens junction constituents in the epithelia of different germ layers of the amphioxus embryo. Differential expression of the two cadherins was also observed in the developing, multicell-layered notochord. These observations suggest that, despite their unique structures, the functions and developmental roles of Bb1C and Bb2C are comparable to those of the classic cadherins characterized to date in other animal groups, such as the vertebrate E- and N-cadherins and the Drosophila DE- and DN-cadherins. The possible involvement of Bb1C and Bb2C in the development of multicell-layered structures characteristic of the cephalochordate body plan is presented.
Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures
Hiroki Oda, Yasuko Akiyama-Oda, Shicui Zhang; Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures. J Cell Sci 1 June 2004; 117 (13): 2757–2767. doi: https://doi.org/10.1242/jcs.01045
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).