Heat shock proteins (Hsps) are a family of highly homologous chaperone proteins that are induced in response to environmental, physical and chemical stresses and that limit the consequences of damage and facilitate cellular recovery. The underlying ability of Hsps to maintain cell survival correlates with an inhibition of caspase activation and apoptosis that can, but does not always, depend upon their chaperoning activities. Several mechanisms proposed to account for these observations impact on both the `intrinsic', mitochondria-dependent and the `extrinsic', death-receptor-mediated pathways to apoptosis. Hsps can inhibit the activity of pro-apoptotic Bcl-2 proteins to prevent permeabilization of the outer mitochondrial membrane and release of apoptogenic factors. The disruption of apoptosome formation represents another mechanism by which Hsps can prevent caspase activation and induction of apoptosis. Several signaling cascades involved in the regulation of key elements within the apoptotic cascade are also subject to modulation by Hsps, including those involving JNK, NF-κB and AKT. The coordinated activities of the Hsps thus modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli.
`The stress of dying': the role of heat shock proteins in the regulation of apoptosis
Helen M. Beere; `The stress of dying': the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 1 June 2004; 117 (13): 2641–2651. doi: https://doi.org/10.1242/jcs.01284
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.