One of the most striking `rags to riches' stories in the protein world is that of 14-3-3, originally identified in 1967 as merely an abundant brain protein. The first clues that 14-3-3 would play an important role in cell biology came almost 25 years later when it was found to interact with various proto-oncogene proteins and signaling proteins. The subsequent identification of 14-3-3 as a phosphoserine/phosphothreonine-binding protein firmly established its importance in cell signaling. 14-3-3 family members are found in all eukaryotes – from plants to mammals – and more than 100 binding partners have been identified to date. The targets of 14-3-3 are found in all subcellular compartments and their functional diversity is overwhelming – they include transcription factors, biosynthetic enzymes, cytoskeletal proteins, signaling molecules, apoptosis factors and tumor suppressors. 14-3-3 binding can alter the localization, stability, phosphorylation state, activity and/or molecular interactions of a target protein. Recent studies now indicate that the serine/threonine protein phosphatases PP1 and PP2A are important regulators of 14-3-3 binding interactions, and demonstrate a role for 14-3-3 in controlling the translocation of certain proteins from the cytoplasmic and endoplasmic reticulum to the plasma membrane. New reports also link 14-3-3 to several neoplastic and neurological disorders, where it might contribute to the pathogenesis and progression of these diseases.
Unlocking the code of 14-3-3 Available to Purchase
Michele K. Dougherty, Deborah K. Morrison; Unlocking the code of 14-3-3. J Cell Sci 15 April 2004; 117 (10): 1875–1884. doi: https://doi.org/10.1242/jcs.01171
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.