Respiratory tract infections caused by Bordetella pertussis are occasionally accompanied by severe neurologic disorders and encephalopathies. For these sequelae to occur the integrity of cerebral barriers needs to be compromised. The influence of pertussis toxin, a decisive virulence factor in the pathogenesis of pertussis disease, on barrier integrity was investigated in model systems for blood-liquor (epithelial) and blood-brain (endothelial)barriers. While pertussis toxin did not influence the barrier function in Plexus chorioideus model systems, the integrity of cerebral endothelial monolayers was severely compromised. Cellular intoxication by pertussis toxin proceeds via ADP-ribosylation of α-Giproteins, which not only interferes with the homeostatic inhibitory regulation of adenylate cyclase stimulation but also results in a modulation of the membrane receptor coupling. Increasing intra-endothelial cAMP levels by employing cholera toxin or forskolin even inhibited the pertussis toxin-induced permeabilization of endothelial barriers. Therefore,pertussis-toxin-induced permeabilization has to be mediated via a cAMP-independent pathway. To investigate potential signalling pathways we employed several well established cellular drugs activating or inhibiting central effectors of signal transduction pathways, such as phosphatidylinositol 3-kinase, adenylate cyclase, phospholipase C, myosin light chain kinase and protein kinase C. Only inhibitors and activators of protein kinase C and phosphatidylinositol 3-kinase affected the pertussis toxin-induced permeability. In summary, we conclude that permeabilization of cerebral endothelial monolayers by pertussis toxin does not depend on elevated cAMP levels and proceeds via the phosphokinase C pathway.
Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP
Kerstin E. Brückener, Ali el Bayâ, Hans-Joachim Galla, M. Alexander Schmidt; Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J Cell Sci 1 May 2003; 116 (9): 1837–1846. doi: https://doi.org/10.1242/jcs.00378
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).