Differentiation and morphogenesis of skeletal muscle are complex and asynchronous events that involve various myogenic cell populations and extracellular signals. Embryonic and fetal skeletal myoblasts are responsible for the formation of primary and secondary fibers, respectively, although the mechanism that diversifies their fate is not fully understood. Calcium transients appear to be a signaling mechanism that is widely utilized in differentiation and embryogenesis. In mature skeletal muscle, calcium transients are generated mainly by ryanodine receptors (type 1 and type 3),which are involved in excitation-contraction coupling. However, it is not clear whether the activity of these receptors is important for contractile activity alone or whether it may also play a role in regulating the differentiation/developmental processes. To clarify this point, we first examined the expression of the receptors during development. The results show that the expression of both receptors appears as early as E13 during limb muscle development and parallels the expression of skeletal myosin. The expression and the activity of both receptors is maintained in vitro by all myogenic cell populations isolated from different stages of development,including somitic, embryonic and fetal myoblasts and satellite cells. Blocking ryanodine receptor activity by using ryanodine inhibits in vitro differentiation of fetal myoblasts (judged by the expression of sarcomeric myosin and formation of multinucleated myotubes) but not of somitic or embryonic and satellite muscle cells. This block is caused by the transcriptional inhibition of markers characteristic of terminal differentiation, rather than commitment, as the expression of muscle regulatory factors is not impaired by ryanodine treatment. Taken together, the data reported in this paper demonstrate that, although calcium transients represent a general mechanism for the control of differentiation and development, multiple calcium-dependent pathways may be relevant in different myogenic populations during development. Moreover, since fetal myoblasts are responsible for the formation of secondary fibers during development, and therefore for the building of the bulk of muscular mass, these results suggest that calcium release from ryanodine receptors plays a role in the histogenesis of mammalian skeletal muscle.
The block of ryanodine receptors selectively inhibits fetal myoblast differentiation
Alessandro Pisaniello, Carlo Serra, Daniela Rossi, Elisabetta Vivarelli, Vincenzo Sorrentino, Mario Molinaro, Marina Bouché; The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. J Cell Sci 15 April 2003; 116 (8): 1589–1597. doi: https://doi.org/10.1242/jcs.00358
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.