The synaptotagmin family of membrane proteins has been implicated in both exocytosis and endocytosis. Synaptotagmin I, a protein containing two tandem C2 domains (the C2A and the C2B) in its cytoplasmic tail, is involved in regulated exocytosis of synaptic vesicles as well as compensatory endocytosis. A related family member, synaptotagmin VII, is involved in multiple forms of regulated exocytosis of lysosomes and secretory granules. In this study we show that the cytoplasmic C2 domains in synaptotagmin VII contain unique internalization signals and regulators of these signals. The C-terminal portion of the C2B is internalized in much the same way as the corresponding region of synaptotagmin I. This signal is tryptophan-based and dynamin and eps15 dependent. In contrast, the C2A contains an unusual internalization signal that is not seen in the C2A of synaptotagmin I. This signal is not based on the homologous tryptophan in its C-terminus. Moreover,internalization of the C2A domain is both dynamin and eps15 independent. Finally, the C2B domain of synaptotagmin VII contains an inhibitory motif that prevents internalization. Endocytic trafficking of synaptotagmin VII is thus governed by these two latent internalization signals, which are concealed by intramolecular inhibition. We propose that endocytosis of synaptotagmin VII is regulated in this way to allow it to couple the processes of regulated exocytosis and compensatory endocytosis.
Internalization signals in synaptotagmin VII utilizing two independent pathways are masked by intramolecular inhibitions Available to Purchase
Shoumita Dasgupta, Regis B. Kelly; Internalization signals in synaptotagmin VII utilizing two independent pathways are masked by intramolecular inhibitions. J Cell Sci 1 April 2003; 116 (7): 1327–1337. doi: https://doi.org/10.1242/jcs.00290
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.