p0071, a member of the armadillo protein family, is most closely related to p120ctn and the plakophilins 1-3. Whereas plakophilins are desmosomal plaque proteins, p120ctn localizes to adherens junctions and interacts with classical cadherins. In contrast, p0071 has been described as a protein with dual localization in adherens junctions and desmosomes depending on the cell type examined. Here we have analyzed the localization of p0071 and its domains in detail. Although by sequence analysis, p0071 is more closely related to the adherens junction proteins p120ctn, ARVCF and δ-catenin, endogenous p0071 associated preferentially with desmosomes in MCF-7 epithelial cells. Overexpressed p0071 localized along cell borders and overlapped only partially with desmosomal markers but colocalized with non-desmosomal cadherins and recruited cadherins to the membrane. The head domain of p0071 was sufficient for desmosomal targeting, whereas the arm repeat domain associated with adherens junctions and enhanced membrane association of classical cadherins. The tail domain localized preferentially to the nucleus and associated with desmosomes. To examine the mechanism underlying this dual localization more closely we determined binding partners of p0071 by using yeast-two-hybrid and mom-targeting assays. These approaches show that the head domain interacted with desmosomal proteins desmocollin 3a and desmoplakin, whereas the armadillo repeat domain binds to non-desmosomal cadherins. Head and armadillo repeat domains both interacted with plakoglobin by binding to different sites. Our data suggest that, in addition to plakoglobin, p0071 is the second armadillo protein present in both types of adhesive junctions and may play a role in regulating crosstalk between adherens junctions and desmosomes.
Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains
Mechthild Hatzfeld, Kathleen J. Green, Helmut Sauter; Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. J Cell Sci 1 April 2003; 116 (7): 1219–1233. doi: https://doi.org/10.1242/jcs.00275
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.