The apical-most epithelial intercellular junction, referred to as the tight junction (TJ), regulates paracellular solute flux in diverse physiological and pathological states. TJ affiliations with the apical filamentous actin(F-actin) cytoskeleton are crucial in regulating TJ function. F-actin organization is influenced by the Rho GTPase family, which also controls TJ function. To explore the role of Rho GTPases in regulating TJ structure and function, we utilized Escherichia coli cytotoxic necrotizing factor-1(CNF-1) as a tool to activate constitutively Rho, Rac and Cdc42 signaling in T84 polarized intestinal epithelial monolayers. The biological effects of the toxin were polarized to the basolateral membrane, and included profound reductions in TJ gate function, accompanied by displacement of the TJ proteins occludin and zonula occludens-1 (ZO-1), and reorganization of junction adhesion molecule-1 (JAM-1) away from the TJ membrane. Immunogold electron microscopy revealed occludin and caveolin-1 internalization in endosomal/caveolar-like structures in CNF-treated cells. Immunofluorescence/confocal microscopy suggested that a pool of internalized occludin went to caveolae, early endosomes and recycling endosomes, but not to late endosomes. This provides a novel mechanism potentially allowing occludin to evade a degradative pathway, perhaps allowing efficient recycling back to the TJ membrane. In contrast to the TJ, the characteristic ring structure of proteins in adherens junctions (AJs) was largely preserved despite CNF-1 treatment. CNF-1 also induced displacement of a TJ-associated pool of phosphorylated myosin light chain (p-MLC), which is normally also linked to the F-actin contractile machinery in epithelial cells. The apical perjunctional F-actin ring itself was maintained even after toxin exposure,but there was a striking effacement of microvillous F-actin and its binding protein, villin, from the same plane. However, basal F-actin stress fibers became prominent and cabled following basolateral CNF-1 treatment, and the focal adhesion protein paxillin was tyrosine phosphorylated. This indicates differences in Rho GTPase-mediated control of distinct F-actin pools in polarized cells. Functionally, CNF-1 profoundly impaired TJ/AJ assembly in calcium switch assays. Re-localization of occludin but not E-cadherin along the lateral membrane during junctional reassembly was severely impaired by the toxin. A balance between activity and quiescence of Rho GTPases appears crucial for both the generation and maintenance of optimal epithelial barrier function. Overactivation of Rho, Rac and Cdc42 with CNF-1 seems to mirror key barrier-function disruptions previously reported for inactivation of RhoA.
Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function Available to Purchase
Ann M. Hopkins, Shaun V. Walsh, Paul Verkade, Patrice Boquet, Asma Nusrat; Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 15 February 2003; 116 (4): 725–742. doi: https://doi.org/10.1242/jcs.00300
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.