G-protein-coupled receptors (GPCRs) constitute a large and diverse family of proteins whose primary function is to transduce extracellular stimuli into intracellular signals. They are among the largest and most diverse protein families in mammalian genomes. On the basis of homology with rhodopsin, they are predicted to contain seven membrane-spanning helices, an extracellular N-terminus and an intracellular C-terminus. This gives rise to their other names, the 7-TM receptors or the heptahelical receptors. GPCRs transduce extracellular stimuli to give intracellular signals through interaction of their intracellular domains with heterotrimeric G proteins, and the crystal structure of one member of this group, bovine rhodopsin, has recently been solved (Palczewski et al., 2000).

The presence of GPCRs in the genomes of bacteria, yeast, plants, nematodes and other invertebrate groups argues in favor of a relatively early evolutionary origin of this group of molecules. The diversity of GPCRs is dictated both by the...

You do not currently have access to this content.