Eukaryotic gene expression can be viewed within a conceptual framework in which regulatory mechanisms are integrated at three hierarchical levels. The first is the sequence level, i.e. the linear organization of transcription units and regulatory sequences. Here, developmentally co-regulated genes seem to be organized in clusters in the genome, which constitute individual functional units. The second is the chromatin level, which allows switching between different functional states. Switching between a state that suppresses transcription and one that is permissive for gene activity probably occurs at the level of the gene cluster, involving changes in chromatin structure that are controlled by the interplay between histone modification, DNA methylation, and a variety of repressive and activating mechanisms. This regulatory level is combined with control mechanisms that switch individual genes in the cluster on and off, depending on the properties of the promoter. The third level is the nuclear level, which includes the dynamic 3D spatial organization of the genome inside the cell nucleus. The nucleus is structurally and functionally compartmentalized and epigenetic regulation of gene expression may involve repositioning of loci in the nucleus through changes in large-scale chromatin structure.
The eukaryotic genome: a system regulated at different hierarchical levels
Roel van Driel, Paul F. Fransz, Pernette J. Verschure; The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 15 October 2003; 116 (20): 4067–4075. doi: https://doi.org/10.1242/jcs.00779
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).