Glial-cell-line-derived neurotrophic factor (GDNF) was originally identified as a survival factor for midbrain dopaminergic neurons. GDNF and related ligands, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), maintain several neuronal populations in the central nervous systems, including midbrain dopamine neurons and motoneurons. In addition, GDNF, NRTN and ARTN support the survival and regulate the differentiation of many peripheral neurons, including sympathetic, parasympathetic, sensory and enteric neurons. GDNF has further critical roles outside the nervous system in the regulation of kidney morphogenesis and spermatogenesis. GDNF family ligands bind to specific GDNF family receptor α (GFRα) proteins, all of which form receptor complexes and signal through the RET receptor tyrosine kinase. The biology of GDNF signalling is much more complex than originally assumed. The neurotrophic effect of GDNF, except in motoneurons, requires the presence of transforming growth factor β, which activates the transport of GFRα1 to the cell membrane. GDNF can also signal RET independently through GFR1α. Upon ligand binding, GDNF in complex with GFRα1 may interact with heparan sulphate glycosaminoglycans to activate the Met receptor tyrosine kinase through cytoplasmic Src-family kinases. GDNF family ligands also signal through the neural cell adhesion molecule NCAM. In cells lacking RET, GDNF binds with high affinity to the NCAM and GFRα1 complex, which activates Fyn and FAK.
Novel functions and signalling pathways for GDNF Available to Purchase
Hannu Sariola, Mart Saarma; Novel functions and signalling pathways for GDNF. J Cell Sci 1 October 2003; 116 (19): 3855–3862. doi: https://doi.org/10.1242/jcs.00786
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.