R-Ras promotes cell adhesion and activation of integrins through a process that is yet unknown. We show here that active R-Ras (38V) promotes the formation of focal adhesions and a spread cell shape. By contrast, the dominant-negative mutant of R-Ras (43N) reduces the number of focal adhesions, leading to the formation of refractile cells. In adherent cells wild-type R-Ras, activated (38V) R-Ras and endogeous R-Ras were preferentially targeted to focal adhesions, whereas the dominant-negative mutant (43N) of R-Ras was excluded from these structures. Activated mutants of H-Ras and K-Ras were not found in focal adhesions. We dissected R-Ras to find out the determinants that are important for the targeting process. The outermost region in the N-terminus of R-Ras, as well as the intact proline-rich sequence in the C-terminus of RRas that mediates binding to Nck, were not essential. Mutating the potential palmitoylation site (C213A) of RRas results in depalmitoylation and accumulation of R-Ras in the Golgi. Using H-Ras/R-Ras, R-Ras/H-Ras and RRas/K-Ras hybrid molecules we showed that the C-termini (175-218 amino acids) of R-Ras contains the signal for focal adhesions targeting. Exchanging the hypervariable region of H-Ras to R-Ras inhibited the targeting of R-Ras to focal adhesions, whereas H-Ras obtained the ability to localize to focal adhesions after receiving the hypervariable region of R-Ras. This indicates that R-Ras targeting is mediated both by the nucleotide binding status as well as through a specific region in the C-terminus of R-Ras. These results indicate that targeting and activation of R-Ras are linked processes in the formation of focal adhesions.
The C-terminal end of R-Ras contains a focal adhesion targeting signal Available to Purchase
Johanna Furuhjelm, Johan Peränen; The C-terminal end of R-Ras contains a focal adhesion targeting signal. J Cell Sci 15 September 2003; 116 (18): 3729–3738. doi: https://doi.org/10.1242/jcs.00689
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.