Reprogramming somatic nuclear function by transplantation of nuclei into recipient oocytes is associated with a morphological remodeling of the somatic nucleus. Successful cloning of animals by nuclear transplantation (NT) demonstrates that reprogramming somatic cell function is possible. However, low pregnancy rates and high frequencies of lethal abnormalities in animals born suggest that reprogramming is rarely complete. To address this issue, we tested the hypothesis that nuclear transplantation leads to nuclear remodeling deficiencies. We report the identification of several markers of morphological remodeling, or lack thereof, of mouse cumulus cell nuclei after transplantation into oocytes. Notably, nuclear transplant mouse embryos exhibit nuclear assembly of the differentiated cell-specific A-type lamins at the one-cell stage, as a result of misregulation of lamin A gene expression. The transplanted nuclei also display enhanced concentration of the nuclear matrix-associated protein NuMA as a result of translation from maternal mRNA and de novo transcription. The A-kinase anchoring protein 95 (AKAP95), a marker of the nuclear envelope-chromatin interface, is of somatic origin. Furthermore, greater resistance of AKAP95 and DNA to in situ extractions of one-cell stage NT embryos with non-ionic detergent, DNase, RNase and NaCl reflects an enhanced proportion of heterochromatin in these embryos. Passage through first embryonic mitosis does not rescue the defects detected in one-cell stage embryos. We propose that somatic nuclear reprogramming deficiencies by NT might emanate from, at least in part, failure to remodel the somatic nucleus morphologically into a functional embryonic nucleus.
Architectural defects in pronuclei of mouse nuclear transplant embryos Available to Purchase
Present address: Instituto Nacional de Investigación y Tecnologia Agrária y Alimentária, Carretera de La Coruña, 28040 Madrid, Spain
Pedro N. Moreira, James M. Robl, Philippe Collas; Architectural defects in pronuclei of mouse nuclear transplant embryos. J Cell Sci 15 September 2003; 116 (18): 3713–3720. doi: https://doi.org/10.1242/jcs.00692
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.