The striking left-right asymmetry of visceral organs is known to depend on left- and right-side-specific cascades of gene expression during early embryogenesis. Now, developmental biologists are characterizing the earliest steps in asymmetry determination that dictate the sidedness of asymmetric gene expression. The proteins and structures involved control fascinating physiological processes, such as extracellular fluid flow and membrane voltage potential and yet little is known about how their activities are coordinated to control laterality. By analogy with intercellular signalling in certain epithelial and endothelial cells, however, it is reasonable to speculate that at least three of these players, monocilia, gap junction communication and the Ca2+ channel polycystin-2, participate in a signalling pathway that propagates left-right cues through multicellular fields.
Left-right asymmetry: Nodal points Available to Purchase
Mark Mercola; Left-right asymmetry: Nodal points. J Cell Sci 15 August 2003; 116 (16): 3251–3257. doi: https://doi.org/10.1242/jcs.00668
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.