Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid-ordered properties appear to be important for their function. We investigated the possibility of using amphiphiles to disrupt lipid rafts and thereby inhibit IgE-FcϵRI signaling. We find that short-chain ceramides –C2-ceramide and C6-ceramide – decrease plasma membrane lipid order and reduce the extent of fluorescence resonance energy transfer between lipid-raft-associated molecules on intact cells; by contrast,biologically inactive C2-dihydroceramide does neither. Structural perturbations by these ceramides parallel their inhibitory effects on antigen-stimulated Ca2+ mobilization in RBL mast cells in the presence and absence of extracellular Ca2+. Similar inhibition of Ca2+ mobilization is caused by n-butanol, which prevents phosphatidic acid production by phospholipase D, but not by t-butanol, which does not prevent phosphatidic acid production. These results and previously reported effects of short-chain ceramides on phospholipase D activity prompted us to compare the effects of C2-ceramide,C2-dihydroceramide and C16-ceramide on phospholipase D1 and phospholipase D2 activities in vitro. We find that the effects of these ceramides on phospholipase D1 activity strongly correlate with their effects on antigen-stimulated Ca2+ mobilization and with their disruption of lipid order. Our results indicate that phospholipase D activity is upstream of antigen-stimulated Ca2+ mobilization in these cells, and they demonstrate that ceramides can serve as useful probes for investigating roles of plasma membrane structure and phospholipase D activity in cellular signaling.
Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcϵRI Available to Purchase
Present address: Laboratory of Immunogenetics, NIH NIAID Twinbrook II,12441 Parklawn Drive, Rockville, MD 20852, USA
Present address: Department of Pharmacology and The Institute for Chemical Biology, Vanderbilt University Medical Center, 412 Preston Research Building,Nashville, TN 37232-6600, USA
Arun Gidwani, H. Alex Brown, David Holowka, Barbara Baird; Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcϵRI. J Cell Sci 1 August 2003; 116 (15): 3177–3187. doi: https://doi.org/10.1242/jcs.00621
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.