CrkII belongs to a family of adaptor proteins that become tyrosine phosphorylated after various stimuli. We examined the role of CrkII tyrosine phosphorylation in fibronectin-induced cell migration. Overexpression of CrkII inhibited dephosphorylation of focal adhesion components such as p130 Crk-associated substrate (p130cas) and paxillin by protein tyrosine phosphatase 1B (PTP1B). Tyrosine-phosphorylated CrkII was dephosphorylated by PTP1B both in vitro and in vivo, showing for the first time that PTP1B directly dephosphorylates CrkII. A CrkII mutant in which tyrosine residue 221 was substituted by phenylalanine (CrkII-Y221F) could not be tyrosine phosphorylated, and it showed significantly increased binding to p130cas and paxillin. Enhanced binding of CrkII to p130cas has been reported to promote cell migration. Nonphosphorylated CrkII-Y221F promoted HT1080 cell migration on fibronectin,whereas wild-type CrkII did not at moderate expression levels. Moreover,co-expression of CrkII and PTP1B promoted HT1080 cell migration on fibronectin and retained tyrosine phosphorylation and binding of p130cas to CrkII, whereas paxillin tyrosine phosphorylation was reduced. These findings support the concepts that CrkII binding activity is regulated by tyrosine kinases and phosphatases, and that tyrosine phosphorylation of CrkII can downmodulate cell migration mediated by the focal adhesion kinase/p130cas pathway.
Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration Available to Purchase
Takahisa Takino, Masahito Tamura, Hisashi Miyamori, Masaru Araki, Kazue Matsumoto, Hiroshi Sato, Kenneth M. Yamada; Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. J Cell Sci 1 August 2003; 116 (15): 3145–3155. doi: https://doi.org/10.1242/jcs.00632
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.