The human keratinocyte cell line HaCaT expresses essentially all epidermal differentiation markers but exhibits deficiencies in tissue organization as surface transplants in nude mice and even more so in organotypic co-cultures with fibroblasts. Whereas tissue differentiation by normal keratinocytes(NEKs) is regulated by stromal interactions, this mechanism is impaired in HaCaT cells. This regulatory process is initiated by interleukin-1 (IL-1)release in keratinocytes, which induces expression of keratinocyte growth factor (KGF/FGF-7) and granulocyte macrophage-colony stimulating factor(GM-CSF) in fibroblasts. Production and release of IL-1 is very low and,consequently, expression of the fibroblast-derived growth factors KGF/FGF-7 and GM-CSF is absent in HaCaT-fibroblast co-cultures. However, addition of KGF and GMCSF, respectively, is inefficient to improve stratification and differentiation by HaCaT cells due to the low expression of their cognate receptors. More importantly, expression and release of the autocrine keratinocyte growth factor TGF-α is dramatically decreased in HaCaT cells. Addition of TGF- α or EGF stimulated HaCaT cell proliferation but, even more effectively, suppressed apoptosis, thus facilitating the formation of a regularly stratified epithelium. Furthermore, TGF-αenhanced the expression of the receptors for KGF and GM-CSF so that addition of these growth factors, or of their inducer IL-1, further improved epidermal tissue differentiation leading to in vitro skin equivalents comparable with cultures of NEKs. Thus, supplementing TGF-α normalized epidermal tissue regeneration by immortal HaCaT keratinocytes and their interaction with stromal cells so that regular skin equivalents are produced as standardized in vitro models.
Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α Available to Purchase
Nicole Maas-Szabowski, Anja Stärker, Norbert E. Fusenig; Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J Cell Sci 15 July 2003; 116 (14): 2937–2948. doi: https://doi.org/10.1242/jcs.00474
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.