Secretory proteins enter the secretory pathway by translocation across the membrane of the endoplasmic reticulum (ER) via a channel formed primarily by the Sec61 protein. Protein translocation is highly temperature dependent in mesophilic organisms. We asked whether the protein translocation machinery of organisms from extremely cold habitats was adapted to function at low temperature and found that post-translational protein import into ER-derived microsomes from Antarctic yeast at low temperature was indeed more efficient than into mesophilic yeast microsomes. Analysis of the amino-acid sequences of the core component of the protein translocation channel, Sec61p, from Antarctic yeast species did not reveal amino-acid changes potentially adaptive for function in the cold, because the sequences were too divergent. We therefore analyzed Sec61α (vertebrate Sec61p) sequences and protein translocation into the ER of Antarctic and Arctic fishes and compared them to Sec61α and protein translocation into the ER of temperate-water fishes and mammals. Overall, Sec61α is highly conserved amongst these divergent taxa; a number of amino-acid changes specific to fishes are evident throughout the protein, and, in addition, changes specific to cold-water fishes cluster in the lumenal loop between transmembrane domains 7 and 8 of Sec61α,which is known to be important for protein translocation across the ER membrane. Secretory proteins translocated more efficiently into fish microsomes than into mammalian microsomes at 10°C and 0°C. The efficiency of protein translocation at 0°C was highest for microsomes from a cold-water fish. Despite substantial differences in ER membrane lipid composition, ER membrane fluidity was identical in Antarctic fishes,mesophilic fishes and warm-blooded vertebrates, suggesting that membrane fluidity, although typically important for the function of the transmembrane proteins, is not limiting for protein translocation across the ER membrane in the cold. Collectively, our data suggest that the limited amino-acid changes in Sec61α from fishes may be functionally significant and represent adaptive changes that enhance channel function in the cold.
Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms Available to Purchase
Karin Römisch, Nicola Collie, Nelyn Soto, James Logue, Margaret Lindsay, Wiep Scheper, Chi-Hing C. Cheng; Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 15 July 2003; 116 (14): 2875–2883. doi: https://doi.org/10.1242/jcs.00597
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.