Endocytosis is a regulated physiological process by which membrane receptors and their extracellular ligands are internalized. After internalization, they enter the endosomal trafficking pathway for sorting and processing. Amphiphysins consist of a family of proteins conserved throughout evolution that are crucial elements of the endocytosis machinery in mammalian cells. They act as adaptors for a series of proteins important for the endocytic process, such as dynamin. In order to improve our knowledge of amphiphysin function, we performed a two-hybrid screen with the N-terminal part of murine amphiphysin 2 (residues 1-304). One of the interacting clones corresponded to sorting nexin 4 (SNX4), a member of the SNX family of proteins which are suspected to regulate vesicular trafficking. This interaction was confirmed in vivo by co-immunoprecipitation. Immunofluorescence analysis revealed that amphiphysin 2 might bind reticulo-vesicular structures present throughout the cell body and be associated with SNX4 on these structures. In an endocytosis assay, overexpressed C-terminal or full-length SNX4 was able to inhibit transferrin receptor endocytosis as efficiently as the SH3 domain of amphiphysin 2. At lower levels of expression, SNX4 colocalized with transferrin-containing vesicles, some of which were also positive for amphiphysin 2. These results indicate that SNX4 may be part of the endocytic machinery or, alternatively, that SNX4 may associate with key elements of endocytosis such as amphiphysin 2 and sequester them when overexpressed. The presence of amphiphysin 2 on intracellular vesicles and its interplay with SNX4, which is likely to take part in intracellular trafficking, suggest that amphiphysin 2 is not only a regulator of the early steps of endocytosis. It could also play a role at the surface of the endocytic vesicle that has just been formed and of the future endosomes, in order to regulate intracellular trafficking.
Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking Available to Purchase
Corinne Leprince, Erwan Le Scolan, Brigitte Meunier, Vincent Fraisier, Nathalie Brandon, Jean De Gunzburg, Jacques Camonis; Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J Cell Sci 15 May 2003; 116 (10): 1937–1948. doi: https://doi.org/10.1242/jcs.00403
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.