In mitosis, NuMA localises to spindle poles where it contributes to the formation and maintenance of focussed microtubule arrays. Previous work has shown that NuMA is transported to the poles by dynein and dynactin. So far, it is unclear how NuMA accumulates at the spindle poles following transport and how it remains associated throughout mitosis. We show here that NuMA can bind to microtubules independently of dynein/dynactin. We characterise a 100-residue domain located within the C-terminal tail of NuMA that mediates a direct interaction with tubulin in vitro and that is necessary for NuMA association with tubulin in vivo. Moreover, this domain induces bundling and stabilisation of microtubules when expressed in cultured cells and leads to formation of abnormal mitotic spindles with increased microtubule asters or multiple poles. Our results suggest that NuMA organises the poles by stable crosslinking of the microtubule fibers.
Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules Available to Purchase
Laurence Haren, Andreas Merdes; Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci 1 May 2002; 115 (9): 1815–1824. doi: https://doi.org/10.1242/jcs.115.9.1815
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.