Plant development requires stringent controls between cell proliferation and cell differentiation. Proliferation is positively regulated by cyclin dependent kinases (CDKs). Acting in opposition to CDKs are CDK inhibitors(CKIs). The first tobacco CKI (NtKIS1a) identified was shown to inhibit in vitro the kinase activity of CDK/cyclin complexes and to interact with CDK and D-cyclins. However, these features, which are common to other plant and animal CKIs already characterised, did not provide information about the function of NtKIS1a in plants. Thus, to gain insight into the role of NtKIS1a and especially its involvement in cell proliferation during plant development, we generated transgenic Arabidopsis thaliana plants that overexpress NtKIS1a. These plants showed reduced growth with smaller organs that contained larger cells. Moreover, these plants displayed modifications in plant morphology. These results demonstrated that plant organ size and shape,as well as organ cell number and cell size, might be controlled by modulation of the single NtKIS1a gene activity. Since in mammals, D-cyclins control cell cycle progression in a CDK-dependent manner but also play a CDK independent role by sequestering the CKIs p27Kip1 and p21Cip1, we tested the significance of cyclin D-CKI interaction within a living plant. With this aim, NtKIS1a and AtCycD3;1 were overexpressed simultaneously in plants by two different methods. Our results demonstrated that overexpression of the CKI NtKIS1a restores essentially normal development in plants overexpressing AtCycD3;1, providing the first evidence of cyclin D-CKI co-operation within the context of a living plant.
The CDK inhibitor NtKIS1a is involved in plant development,endoreduplication and restores normal development of cyclin D3;1-overexpressing plants
Sophie Jasinski, Catherine Riou-Khamlichi, Odile Roche, Claudette Perennes, Catherine Bergounioux, Nathalie Glab; The CDK inhibitor NtKIS1a is involved in plant development,endoreduplication and restores normal development of cyclin D3;1-overexpressing plants. J Cell Sci 1 March 2002; 115 (5): 973–982. doi: https://doi.org/10.1242/jcs.115.5.973
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.