Katanin is a microtubule-severing protein that is concentrated at mitotic spindle poles but katanin's function in the mitotic spindle has not been previously reported. Inhibition of katanin with either of two dominant-negative proteins or a subunit-specific antibody prevented the redistribution of γ-tubulin from the centrosome to the spindle in prometaphase CV-1 cells as assayed by immunofluorescence microscopy. Becauseγ-tubulin complexes can bind to pre-existing microtubule minus ends,these results could be explained by a model in which the broad distribution ofγ-tubulin in the mitotic spindle is in part due to cytosolicγ-tubulin ring complexes binding to microtubule minus ends generated by katanin-mediated microtubule severing. Because microtubules depolymerize at their ends, we hypothesized that a greater number of microtubule ends generated by severing in the spindle would result in an increased rate of spindle disassembly when polymerization is blocked with nocodazole. Indeed,katanin inhibition slowed the rate of spindle microtubule disassembly in the presence of nocodazole. However, katanin inhibition did not affect the rate of exchange between polymerized and unpolymerized tubulin as assayed by fluorescence recovery after photobleaching. These results support a model in which katanin activity regulates the number of microtubule ends in the spindle.
Katanin inhibition prevents the redistribution of γ-tubulin at mitosis
Dan Buster, Karen McNally, Francis J. McNally; Katanin inhibition prevents the redistribution of γ-tubulin at mitosis. J Cell Sci 1 March 2002; 115 (5): 1083–1092. doi: https://doi.org/10.1242/jcs.115.5.1083
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.