Mammalian Nedd4 and its budding yeast orthologue Rsp5 are members of a large family of HECT-domain-containing ubiquitin ligases. Besides possessing a Ca2+/lipid-binding domain, both ligases have multiple protein-interacting modules termed WW domains. The C-terminal WW domains mediate interactions with substrates, but the function of the first WW domain remains unclear. We found that expression of a WW domain 1 Nedd4 mutant inhibits the growth of budding yeast by affecting the rsp5-ole1pathway. The WW domain 1 mutant-induced phenotype is suppressed by ole1 cDNA overexpression or oleic acid supplementation of growth media and ole1 RNA levels are reduced in cells expressing this Nedd4 mutant. Also, the WW domain 1 Nedd4 mutant associates via WW domains 2 and 3 with Spt23, a Rsp5 target and ole1 transactivator. The dominant-negative activity of this mutant is associated with promoting accumulation of unprocessed Spt23 and inhibiting generation of processed and presumably active protein. Also, Spt23 processing is inhibited by a Nedd4 mutant that lacks ubiquitin ligase activity and Spt23-binding-competent Rsp5 mutants harboring WW domain 1 or ligase domain mutations. Interestingly, in mammalian cells, wild-type Nedd4 promotes proteasome-mediated degradation of the precursor form of Spt23. WW domain 1 and ligase domain Nedd4 mutants block its degradation. These results indicate that WW domain 1 of these ligases interacts with cofactors that are required for ubiquitin/proteasome-dependent proteolysis of bound substrates.
Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1
Natalia Shcherbik, Sharad Kumar, Dale S. Haines; Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. J Cell Sci 1 March 2002; 115 (5): 1041–1048. doi: https://doi.org/10.1242/jcs.115.5.1041
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.