Apolipoprotein B mRNA cytidine to uridine editing requires the assembly of a multiprotein editosome comprised minimally of the catalytic subunit,apolipoprotein B mRNA editing catalytic subunit 1 (APOBEC-1), and an RNA-binding protein, APOBEC-1 complementation factor (ACF). A rat homolog has been cloned with 93.5% identity to human ACF (huACF). Peptide-specific antibodies prepared against huACF immunoprecipitated a rat protein of similar mass as huACF bound to apolipoprotein B (apoB) RNA in UV cross-linking reactions, thereby providing evidence that the p66, mooring sequence-selective, RNA-binding protein identified previously in rat liver by UV cross-linking and implicated in editosome assembly is a functional homolog of huACF. The rat protein (p66/ACF) was distributed in both the nucleus and cytoplasm of rat primary hepatocytes. Within a thin section, a significant amount of total cellular p66/ACF was cytoplasmic, with a concentration at the outer surface of the endoplasmic reticulum. Native APOBEC-1 co-fractionated with p66/ACF in the cytoplasm as 60S complexes. In the nucleus, the biological site of apoB mRNA editing, native p66/ACF, was localized to heterochromatin and fractionated with APOBEC-1 as 27S editosomes. When apoB mRNA editing was stimulated in rat primary hepatocytes with ethanol or insulin, the abundance of p66/ACF in the nucleus markedly increased. It is proposed that the heterogeneity in size of complexes containing editing factors is functionally significant and reflects functionally engaged editosomes in the nucleus and an inactive cytoplasmic pool of factors.
The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors
Mark P. Sowden, Nazzareno Ballatori, Karen L. de Mesy Jensen, Lakesha Hamilton Reed, Harold C. Smith; The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J Cell Sci 1 March 2002; 115 (5): 1027–1039. doi: https://doi.org/10.1242/jcs.115.5.1027
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.