The tachyzoite stage of the protozoan parasite Toxoplasma gondiihas two populations of microtubules: spindle microtubules and subpellicular microtubules. To determine how these two microtubule populations are regulated, we investigated microtubule behavior during the cell cycle following treatment with microtubule-disrupting drugs. Previous work had established that the microtubule populations are individually nucleated by two distinct microtubule-organizing centers (MTOCs): the apical polar ring for the subpellicular microtubules and spindle pole plaques/centrioles for the spindle microtubules. When replicating tachyzoites were treated with 0.5 μM oryzalin or 1.0 mM colchicine they retained the capacity to form a spindle and undergo nuclear division. Although these parasites could complete budding,they lost the bulk of their subpellicular microtubules and the ability to reinvade host cells. Both nascent spindle and subpellicular microtubules were disrupted in 2.5 μM oryzalin or 5.0 mM colchicine. Under these conditions,parasites grew in size and replicated their genome but were incapable of nuclear division. After removal from 0.5 μM oryzalin, Toxoplasmatachyzoites were able to restore normal subpellicular microtubules and a fully invasive phenotype. When oryzalin was removed from Toxoplasmatachyzoites treated with 2.5 μM drug, the parasites attempted to bud as crescent-shaped tachyzoites. Because the polyploid nuclear mass could not be correctly segregated, many daughter parasites lacked nuclei altogether although budding and scission from the maternal mass was able to be completed. Multiple MTOCs permit Toxoplasma tachyzoites to control nuclear division independently from cell polarity and cytokinesis. This unusual situation grants greater cell cycle flexibility to these parasites but abolishes the checks for coregulation of nuclear division and cytokinesis found in other eukaryotes.
Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii Available to Purchase
Naomi S. Morrissette, L. David Sibley; Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 1 March 2002; 115 (5): 1017–1025. doi: https://doi.org/10.1242/jcs.115.5.1017
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option
Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.