The BMP2-dependent onset of osteo/chondrogenic differentiation in the acknowledged pluripotent murine mesenchymal stem cell line (C3H10T1/2) is accompanied by the immediate upregulation of Fibroblast Growth Factor Receptor 3 (FGFR3) and a delayed response by FGFR2. Forced expression of FGFR3 in C3H10T1/2 is sufficient for chondrogenic differentiation, indicating an important role for FGF-signaling during the manifestation of the chondrogenic lineage in this cell line. Screening for transcription factors exhibiting a chondrogenic capacity in C3H10T1/2 indentified that the T-box containing transcription factor Brachyury is upregulated by FGFR3-mediated signaling. Forced expression of Brachyury in C3H10T1/2 was sufficient for differentiation into the chondrogenic lineage in vitro and in vivo after transplantation into muscle. A dominant-negative variant of Brachyury, consisting of its DNA-binding domain (T-box), interferes with BMP2-mediated cartilage formation. These studies indicate that BMP-initiated FGF-signaling induces a novel type of transcription factor for the onset of chondrogenesis in a mesenchymal stem cell line. A potential role for this T-box factor in skeletogenesis is further delineated from its expression profile in various skeletal elements such as intervertebral disks and the limb bud at late stages (18.5 d.p.c.) of murine embryonic development.
The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2 Available to Purchase
These authors contributed equally to this work
These authors contributed equally to this work
Andrea Hoffmann, Stefan Czichos, Christian Kaps, Dietmar Bächner, Hubert Mayer, Yoram Zilberman, Gadi Turgeman, Gadi Pelled, Gerhard Gross, Dan Gazit; The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 15 February 2002; 115 (4): 769–781. doi: https://doi.org/10.1242/jcs.115.4.769
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.