Transcriptional repression, which plays a crucial role in diverse biological processes, is mediated in part by non-DNA-binding co-repressors. The closely related co-repressor proteins N-CoR and SMRT, although originally identified on the basis of their ability to associate with and confer transcriptional repression through nuclear receptors, have been shown to be recruited to many classes of transcription factor and are in fact components of multiple protein complexes containing histone deacetylase proteins. This association with histone deacetylase activity provides an important component of the mechanism that allows DNA-binding proteins interacting with N-CoR or SMRT to repress transcription of specific target genes. Both N-CoR and SMRT are important targets for cell signaling pathways, which influence their expression levels, subcellular localization and association with other proteins. Recently, the biological importance of these proteins has been revealed by studies of genetically engineered mice and human diseases such as acute promyelocytic leukemia (APL) and resistance to thyroid hormone(RTH).
Biological roles and mechanistic actions of co-repressor complexes Available to Purchase
Kristen Jepsen, Michael G. Rosenfeld; Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 15 February 2002; 115 (4): 689–698. doi: https://doi.org/10.1242/jcs.115.4.689
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.