Glial cell line-derived neurotrophic factor, GDNF, is vital to the development and maintenance of neural tissues; it promotes survival of sympathetic, parasympathetic and spinal motor neurons during development,protects midbrain dopaminergic neurons from apoptosis well enough to be a promising treatment for Parkinson's disease, and controls renal and testicular development. Understanding how GDNF interacts with its target cells is therefore a priority in several fields. Here we show that GDNF requires glycosaminoglycans as well as the already-known components of its receptor complex, c-Ret and GFRα-1. Without glycosaminoglcyans, specifically heparan sulphate, c-Ret phosphorylation fails and GDNF cannot induce axonogenesis in neurons, in PC-12 cells, or scatter of epithelial cells. Furthermore, exogenous heparan sulphate inhibits rather than assists GDNF signalling. The involvement of heparan sulphates in GDNF signalling raises the possibility that modulation of heparan expression may modulate signalling by GDNF in vivo.
Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan
Mark W. Barnett, Carolyn E. Fisher, Georgia Perona-Wright, Jamie A. Davies; Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. J Cell Sci 1 December 2002; 115 (23): 4495–4503. doi: https://doi.org/10.1242/jcs.00114
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.