Saccharomyces cerevisiae chs2 mutants are unable to synthesize primary septum chitin, and myo1 mutants cannot construct a functional contractile ring. The morphology of the two mutants, as observed by electron microscopy, is very similar. In both cases, neither an invagination of the plasma membrane, which normally results from contraction of the actomyosin ring, nor generation of a chitin disc, the primary septum, is observed. Rather, both mutants are able to complete cytokinesis by an abnormal process in which lateral walls thicken gradually and finally meet over an extended region, giving rise to a thick septum lacking the normal trilaminar structure and often enclosing lacunae. Defects in chs2 or myo1 strains were not aggravated in a double mutant, an indication that the corresponding proteins participate in a common process. In contrast, in a chs3 background the chs2 mutation is lethal and the myo1 defect is greatly worsened, suggesting that the synthesis of chitin catalyzed by chitin synthase III is necessary for the functionality of the remedial septa. Both chs2 and myo1 mutants show abnormalities in budding pattern and a decrease in the level of certain proteins associated with budding, such as Bud3p, Bud4p and Spa2p. The possible reasons for these phenotypes and for the interdependence between actomyosin ring contraction and primary septum formation are discussed.
In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other
Martin Schmidt, Blair Bowers, Archana Varma, Dong-Hyun Roh, Enrico Cabib; In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 15 January 2002; 115 (2): 293–302. doi: https://doi.org/10.1242/jcs.115.2.293
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.