Protein phosphatase 1 (PP1) is a major eukaryotic protein serine/threonine phosphatase that regulates an enormous variety of cellular functions through the interaction of its catalytic subunit (PP1c) with over fifty different established or putative regulatory subunits. Most of these target PP1c to specific subcellular locations and interact with a small hydrophobic groove on the surface of PP1c through a short conserved binding motif – the RVxF motif – which is often preceded by further basic residues. Weaker interactions may subsequently enhance binding and modulate PP1 activity/specificity in a variety of ways. Several putative targeting subunits do not possess an RVxF motif but nevertheless interact with the same region of PP1c. In addition, several ‘modulator’ proteins bind to PP1c but do not possess a domain targeting them to a specific location. Most are potent inhibitors of PP1c and possess at least two sites for interaction with PP1c, one of which is identical or similar to the RVxF motif.Regulation of PP1c in response to extracellular and intracellular signals occurs mostly through changes in the levels, conformation or phosphorylation status of targeting subunits. Understanding of the mode of action of PP1c complexes may facilitate development of drugs that target particular PP1c complexes and thereby modulate the phosphorylation state of a very limited subset of proteins.
Protein phosphatase 1 – targeted in many directions
Patricia T. W. Cohen; Protein phosphatase 1 – targeted in many directions. J Cell Sci 15 January 2002; 115 (2): 241–256. doi: https://doi.org/10.1242/jcs.115.2.241
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.