The transcriptional intermediary factor 1 (TIF1) family protein TIF1βis a corepressor for Krüppel-associated box (KRAB)-domain-containing zinc finger proteins and plays a critical role in early embryogenesis. Here, we examined TIF1β distribution in the nucleus of mouse embryonic carcinoma F9 cells during retinoic-acid-induced primitive endodermal differentiation. Using confocal immunofluorescence microscopy, we show that, although TIF1β is diffusely distributed throughout the nucleoplasm of undifferentiated cells, it relocates and concentrates into distinct foci of centromeric heterochromatin in differentiated cells characterized by a low proliferation rate and a well developed cytokeratin network. This relocation was not observed in isoleucine-deprived cells, which are growth arrested, or in compound RXRα-/-/RARγ-/- null mutant cells, which are resistant to RA-induced differentiation. Amino-acid substitutions in the PxVxL motif of TIF1β, which abolish interaction with members of the heterochromatin protein 1 (HP1) family, prevent its centromeric localization in differentiated cells. Collectively, these data provide compelling evidence for a dynamic nuclear compartmentalization of TIF1βthat is regulated during cell differentiation through a mechanism that requires HP1 interaction.
Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction
Florence Cammas, Mustapha Oulad-Abdelghani, Jean-Luc Vonesch, Yolande Huss-Garcia, Pierre Chambon, Régine Losson; Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 1 September 2002; 115 (17): 3439–3448. doi: https://doi.org/10.1242/jcs.115.17.3439
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).