E2F is an important target of the retinoblastoma protein (pRb) and plays a critical role in G1/S progression through the cell cycle. TGF-β1 arrests HuH-7 cells in G1 by suppressing phosphorylation of pRb and induces apoptosis by inhibiting its expression. In this study, we examined the downstream effects of TGF-β1-induced apoptosis and the potential roles for pRb and E2F. The results indicated that greater than 90% of the TGF-β1-induced preapoptotic cells were arrested in G1 phase of the cell cycle. This was associated with a significant increase in both E2F-DNA-binding activity and transcription of E2F-responsive reporter constructs. In contrast, no significant changes were observed in E2F mRNA and protein levels, and the overexpression of pRb partially inhibited E2F activation. Gel-shift assays identified more than four E2F complexes from preapoptotic and synchronized G1 HuH-7 cells,each exhibiting different patterns of E2F-associated proteins. The increased E2F activity did not affect the association patterns with pRb, p107 and p130,but altered the formation of an E2F—DP-1 complex. In contrast,E2F—DP-2 exhibited little change in the preapoptotic cells. Moreover,TGF-β1 induced apoptosis at G1 and inhibited entry into S phase irrespective of the increased E2F activity. The release of preapoptotic cells from TGF-β1 resulted in rapid S phase entry and subsequent apoptosis in 33% of cells over a 72 hour period. In conclusion, the results demonstrate that TGF-β1-induced apoptosis in HuH-7 cells is associated with a marked increase in activity of transcription factor E2F that is partially inhibited by overexpression of pRb. Preapoptotic changes are, in part, reversible upon removal of TGF-β1 and the majority of cells re-enter the normal cell cycle. Finally, TGF-β1-induced apoptosis with the associated increase in E2F activity can occur in both the G1and S phases of the cell cycle.
Unbound E2F modulates TGF-β1-induced apoptosis in HuH-7 cells
Guangsheng Fan, Xiaoming Ma, Betsy T. Kren, Clifford J. Steer; Unbound E2F modulates TGF-β1-induced apoptosis in HuH-7 cells. J Cell Sci 1 August 2002; 115 (15): 3181–3191. doi: https://doi.org/10.1242/jcs.115.15.3181
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.