In this report we investigated the activity of vertebrate nuclear transport factors in a primitive organism, Amoeba proteus, to better understand evolutionary changes in the transport mechanisms of organisms expected to have different requirements for nucleocytoplasmic exchange. It was initially determined that FxFG-containing nucleoporins and Ran, both of which are essential for nuclear import in vertebrates, as well as yeast, are also present and functional in amoebae. This suggests that there are fundamental similarities in the transport process; however, there are also significant differences. Transport substrates containing either the hnRNP A1 M9 shuttling signal (a GST/GFP/M9 fusion protein) or the classical bipartite NLS (colloidal gold coated with BSA-bipartite NLS conjugates), both of which are effectively transported in vertebrate cells, are excluded from the nucleus when microinjected into amoebae. However, when these substrates are injected along with transportin or importin α/β, respectively, the vertebrate receptors for these signals, they readily accumulate in the nucleoplasm. These results indicate that although the molecular recognition of substrates is not well conserved between vertebrates and amoebae, vertebrate transport receptors are functional in A. proteus, showing that the translocation machinery is highly conserved. Since selected nuclear import pathways can be investigated in the absence of competing endogenous transport, A. proteus might provide a useful in vivo system for investigating specific molecular interactions involved in trafficking.
The molecular mechanism of translocation through the nuclear pore complex is highly conserved
Carl Feldherr, Debra Akin, Trevor Littlewood, Murray Stewart; The molecular mechanism of translocation through the nuclear pore complex is highly conserved. J Cell Sci 15 July 2002; 115 (14): 2997–3005. doi: https://doi.org/10.1242/jcs.115.14.2997
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).