A novel phosphorylation-specific antibody (αpβ-catenin) was generated against a peptide corresponding to amino acids 33-45 of humanβ-catenin, which contained phosphorylated serines at positions 33 and 37. This antibody is specific to phosphorylated β-catenin and reacts neither with the non-phosphorylated protein nor with phosphorylated or non-phosphorylated plakoglobin. It weakly interacts with S33Y β-catenin but not with the S37A mutant. pβ-catenin is hardly detectable in normal cultured cells and accumulates (up to 55% of total β-catenin) upon overexpression of the protein or after blocking its degradation by the proteasome. Inhibition of both GSK-3β and the proteasome resulted in a rapid (t1/2=10 minutes) and reversible reduction in pβ-catenin levels, suggesting that the protein can undergo dephosphorylation in live cells, at a rate comparable to its phosphorylation by GSK-3β. pβ-catenin interacts with LEF-1, but fails to form a ternary complex with DNA, suggesting that it is transcriptionally inactive. Immunofluorescence microscopy indicated that pβ-catenin accumulates in the nuclei of MDCK and BCAP cells when overexpressed and is transiently associated with adherens junctions shortly after their formation. pβ-catenin only weakly interacts with co-transfected N-cadherin, although it forms a complex with the ubiquitin ligase component β-TrCP. SW480 colon cancer cells that express a truncated APC, at position 1338, contain high levels of pβ-catenin,whereas HT29 cells, expressing APC truncated at position 1555, accumulate non-phosphorylated β-catenin, suggesting that the 1338-1555 amino acid region of APC is involved in the differential regulation of the dephosphorylation and degradation of pβ-catenin.
Regulation of S33/S37 phosphorylated β-catenin in normal and transformed cells
Einat Sadot, Maralice Conacci-Sorrell, Jacob Zhurinsky, Dalia Shnizer, Zeev Lando, Dorit Zharhary, Zvi Kam, Avri Ben-Ze'ev, Benjamin Geiger; Regulation of S33/S37 phosphorylated β-catenin in normal and transformed cells. J Cell Sci 1 July 2002; 115 (13): 2771–2780. doi: https://doi.org/10.1242/jcs.115.13.2771
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).