The molecular basis of microtubule nucleation is still not known in higher plant cells. This process is better understood in yeast and animals cells. In the yeast spindle pole body and the centrosome in animal cells,γ-tubulin small complexes and γ-tubulin ring complexes,respectively, nucleate all microtubules. In addition to γ-tubulin,Spc98p or its homologues plays an essential role. We report here the characterization of rice and Arabidopsis homologues of SPC98. Spc98p colocalizes with γ-tubulin at the nuclear surface where microtubules are nucleated on isolated tobacco nuclei and in living cells. AtSpc98p-GFP also localizes at the cell cortex. Spc98p is not associated with γ-tubulin along microtubules. These data suggest that multiple microtubule-nucleating sites are active in plant cells. Microtubule nucleation involving Spc98p-containing γ-tubulin complexes could then be conserved among all eukaryotes, despite differences in structure and spatial distribution of microtubule organizing centers.
The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation Available to Purchase
Mathieu Erhardt, Virginie Stoppin-Mellet, Sarah Campagne, Jean Canaday, Jérôme Mutterer, Tanja Fabian, Margret Sauter, Thierry Muller, Christine Peter, Anne-Marie Lambert, Anne-Catherine Schmit; The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 1 June 2002; 115 (11): 2423–2431. doi: https://doi.org/10.1242/jcs.115.11.2423
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.