CENP-C is a fundamental component of the centromere, highly conserved among species and necessary for the proper assembly of the kinetochore structure and for the metaphase-anaphase transition. Although CENP-C can bind DNA in vitro,the identification of the DNA sequences associated with it in vivo and the significance of such an interaction have been, until now, elusive. To address this problem we took advantage of a chromatin-immunoprecipitation procedure and applied this technique to human HeLa cells. Through this approach we could establish that: (1) CENP-C binds the alpha-satellite DNA selectively; (2) the CENP-C region between amino acids 410 and 537, previously supposed to contain a DNA-binding domain, is indeed required to perform such a function in vivo;and (3) the profile of the alpha-satellite DNA associated with CENP-C is essentially identical to that recognized by CENP-B. However, further biochemical and ultrastructural characterization of CENP-B/DNA and CENP-C/DNA complexes, relative to their DNA components and specific spatial distribution in interphase nuclei, surprisingly reveals that CENP-C and CENP-B associate with the same types of alpha-satellite arrays but in distinct non-overlapping centromere domains. Our results, besides extending previous observations on the role of CENP-C in the formation of active centromeres, show, for the first time, that CENP-C can associate with the centromeric DNA sequences in vivo and, together with CENP-B, defines a highly structured organization of the alpha-satellite DNA within the human centromere.
CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains Available to Purchase
Valeria Politi, Giovanni Perini, Stefania Trazzi, Artem Pliss, Ivan Raska, William C. Earnshaw, Giuliano Della Valle; CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 1 June 2002; 115 (11): 2317–2327. doi: https://doi.org/10.1242/jcs.115.11.2317
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.