Exocytosis and ‘kiss-and-run’ secretion coexist in chromaffin cells. Our findings suggest that these mechanisms are closely related, based on their common molecular machinery. Here we present a model that describes how chromaffin cells regulate catecholamine release by switching the mode of secretion between the two pathways, a process controlled by phosphorylation. Stimulation-dependent vesicle-plasma membrane interactions in chromaffin cells were analysed by simultaneous ‘on-cell’ capacitance and conductance measurements, a technique that allows the monitoring of single vesicles. Capacitance steps represent fusions of large dense-core vesicles with the plasma membrane, whereas capacitance flickers correspond to transient connections of the vesicle lumen with the extracellular space. All these events require the presence of extracellular calcium in millimolar concentrations. ‘Kiss-and-run’ type of release is enhanced by the kinase inhibitor staurosporine, which suggests that this secretion mode is regulated by protein phosphorylation. We also observed capacitance bursts, which most probably represent ‘hot spots’ of secretion and we found that ‘kiss-and-run’ is the prevalent mechanism during these episodes. The significance of ‘kiss-and run’ for neurohormone release is even higher at physiological temperature, because up to half of all secretion events are mediated by this mechanism.

You do not currently have access to this content.