The Saccharomyces cerevisiae cyclin-dependent kinase Cdc28 forms complexes with nine different cyclins to promote cell division. These nine cyclin-Cdc28 complexes have different roles, but share the same catalytic subunit; thus, it is not clear how substrate specificity is achieved. One possible mechanism is specific sub-cellular localization of specific complexes. We investigated the location of two G1 cyclins using fractionation and microscopy. In addition, we developed ‘forced localization’ cassettes, which direct proteins to particular locations, to test the importance of localization. Cln2 was found in both nucleus and cytoplasm. A substrate of Cln2, Sic1, was also in both compartments. Cytoplasmic Cln2 was concentrated at sites of polarized growth. Forced localization showed that some functions of Cln2 required a cytoplasmic location, while other functions required a nuclear location. In addition, one function apparently required shuttling between the two compartments. The G1 cyclin Cln3 required nuclear localization. An autonomous, nuclear localization sequence was found near the C-terminus of Cln3. Our data supports the hypothesis that Cln2 and Cln3 have distinct functions and locations, and the specificity of cyclin-dependent kinases is mediated in part by subcellular location.
Relationship between the function and the location of G1 cyclins in S. cerevisiae
Nicholas P. Edgington, Bruce Futcher; Relationship between the function and the location of G1 cyclins in S. cerevisiae. J Cell Sci 15 December 2001; 114 (24): 4599–4611. doi: https://doi.org/10.1242/jcs.114.24.4599
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.