Low levels of H2O2 can induce cellular resistance to subsequent higher levels of H2O2. By using human U937 leukemia cells, it was previously shown that such an adaptive response can be induced without increasing the cellular capacity to degrade H2O2, thus conferring on the cells a cross-resistance to other stimuli such as serum withdrawal and C2-ceramide. In this study, it was found that stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) acts as a common mediator of the cell death induced by high H2O2 concentrations, serum withdrawal and C2-ceramide. Although SAPK/JNK activation by H2O2 was mediated by two upstream mitogen-activated protein kinase (MAPK) kinases MKK4 and MKK7, only MKK7 played such a role in serum withdrawal and C2-ceramide. Interestingly, all these lethal stimuli failed to activate SAPK/JNK and its upstream kinases in the cells that were pretreated with low adaptive concentrations of H2O2. By contrast, the phosphorylation levels of extracellular signal-regulated kinase and p38 MAPK were not significantly influenced by this H2O2 pretreatment. Inducing the SAPK/JNK-suppressing effect of H2O2 required a time lag, which correlated with the time lag required for the induction of the adaptive response. Overall, the results suggest that H2O2 adaptation confers on cells a resistance to multiple stimuli by specifically blocking their ability to activate the SAPK/JNK pathways.
Adaptive concentrations of hydrogen peroxide suppress cell death by blocking the activation of SAPK/JNK pathway Available to Purchase
Do Kyun Kim, Eun Sook Cho, Je Kyung Seong, Hong-Duck Um; Adaptive concentrations of hydrogen peroxide suppress cell death by blocking the activation of SAPK/JNK pathway. J Cell Sci 1 December 2001; 114 (23): 4329–4334. doi: https://doi.org/10.1242/jcs.114.23.4329
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.