PIX is a Rho-family guanine nucleotide exchange factor that binds PAK. We previously described two isoforms of PIX that differ in their N termini. Here, we report the identification of a new splice variant of βPIX, designated β2PIX, that is the dominant species in brain and that lacks the region of ∼120 residues with predicted coiled-coil structure at the C terminus of β1PIX. Instead, β2PIX contains a serine-rich C terminus. To determine whether these splice variants differ in their cellular function, we studied the effect of expressing these proteins in HeLa cells. We found that the coiled-coil region plays a key role in the localization of β1PIX to the cell periphery and is also responsible for PIX dimerization. Overexpression of β1, but not β2PIX, drives formation of membrane ruffles and microvillus-like structures (via activation of Rac1 and Cdc42, respectively), indicating that its function requires localized activation of these GTPases. Thus, β1PIX, like other RhoGEFs, exerts specific morphological functions that are dependent on its intracellular location and are mediated by its C-terminal dimerization domain.
β1PIX, the PAK-interacting exchange factor, requires localization via a coiled-coil region to promote microvillus-like structures and membrane ruffles Available to Purchase
Cheng-Gee Koh, Ed Manser, Zhou-Shen Zhao, Chee-Peng Ng, Louis Lim; β1PIX, the PAK-interacting exchange factor, requires localization via a coiled-coil region to promote microvillus-like structures and membrane ruffles. J Cell Sci 1 December 2001; 114 (23): 4239–4251. doi: https://doi.org/10.1242/jcs.114.23.4239
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.