Hemidesmosomes are multimeric protein complexes that attach epithelial cells to their underlying matrix and serve as cell surface anchorage sites for the keratin cytoskeleton. Two hemidesmosome components, the α6β4 integrin heterodimer and a human autoantigen termed BP180, are transmembrane proteins that link the extracellular matrix to the keratin network in cells. Here, we report that actinin-4, an actin-bundling protein, is a potential binding partner for BP180. Using yeast two-hybrid, we have mapped the binding site for BP180 to the C-terminal region of actinin-4. This site contains two EF-hand, Ca2+ regulation domains and shares 87% sequence homology with the same region in actinin-1. Consistent with this, BP180 can bind actinin-1 in both the yeast two-hybrid assay and in immunoprecipitation assays. To determine whether the EF-hand domain is a consensus binding sequence for BP180, we tested whether other proteins with this domain bind BP180. None of the proteins tested including calmodulin, with 4 EF-hand domains, and myosin regulatory light chain, with 1 EF-hand domain, interacts with BP180 in yeast two-hybrid system and immunoprecipitation studies, suggesting that the interaction between BP180 and actinin family members is specific. We have compared the distribution of actinin-1 and actinin-4 with that of BP180 in MCF-10A and pp126 cells. Surprisingly, BP180 localizes not only to sites of cell-substratum interaction, but is also present at sites of cell-cell contacts where it co-distributes with both actinin-1 and actinin-4 as well as other adherens junction proteins. In oral tissues, BP180 is present along the basement membrane and at cell-cell contact sites in basal epithelial cells where it co-distributes with adherens junction proteins. Since BP180 antibodies inhibit association of junction proteins at sites of cell-cell contact in oral keratinocytes, these results suggest that BP180 may play a role in establishing cell-cell interactions. We discuss a role for BP180 in crosstalk between cell-matrix and cell-cell junctions.
Interactions of a hemidesmosome component and actinin family members
Annette M. Gonzalez, Carol Otey, Magnus Edlund, Jonathan C. R. Jones; Interactions of a hemidesmosome component and actinin family members. J Cell Sci 1 December 2001; 114 (23): 4197–4206. doi: https://doi.org/10.1242/jcs.114.23.4197
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.