Postsynaptic neuronal dendrites undergo functional and morphological changes in response to pathologically excessive synaptic activation. Although rapid formation of segmental focal swelling (varicosity) is the most prominent hallmark in such excitotoxic injury, little is known about the pathophysiological function of these structural alterations. We used cultured rat hippocampal slices to evaluate the relationship between the formation of varicosities and subsequent neuronal death. Substantial numbers of segmental dendritic varicosities were observed all over the hippocampus within 5 minutes of exposure to 30 μM NMDA, although neuronal death was detected only in the CA1 region 24 hours after NMDA exposure. Sublethal NMDA concentrations (1-10 μM) induced reversible focal swelling in all hippocampal subregions. NMDA-induced neuronal death was prevented either by NMDA receptor antagonists or by the use of Ca2+-free medium, whereas varicosity formation was virtually independent of Ca2+ influx. Rather, the Ca2+-free conditions per se produced dendritic focal swelling. Also, NMDA-induced varicosity formation was dependent on extracellular Na+ concentration. Thus, we believe that varicosity formation is not causally related to neuronal injury and that the two phenomena are separable and involve distinct mechanisms. Interestingly, dendrite swelling was accompanied by AMPA receptor internalization and a rapid, long-lasting depression in synaptic transmission. Moreover, low Na+ conditions or treatment with ethacrynic acid or proteinase inhibitors, which effectively prevent varicosity formation, aggravated NMDA-induced excitotoxicity, and eliminated the regional specificity of the toxicity. Therefore, the pathological changes in dendrite morphology and function may be associated with an early, self-protective response against excitotoxicity.
Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity
These authors contributed equally to this work.
Yuji Ikegaya, Jeong-Ah Kim, Minami Baba, Takeshi Iwatsubo, Nobuyoshi Nishiyama, Norio Matsuki; Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci 15 November 2001; 114 (22): 4083–4093. doi: https://doi.org/10.1242/jcs.114.22.4083
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.