A major impediment to our understanding of the biology of stem cells is the inability to distinguish them from their differentiating progeny. We made use of the known association of stem cells with basement membranes to isolate prostate epithelial stem cells. We show that, in vivo, putative stem cells express higher levels of the α2-integrin subunit than other cells within the basal layer. Approximately 1% of basal cells examined by confocal microscopy were integrin ‘bright’, and these cells can be selected directly from the tissue on the basis of rapid adhesion to type I collagen. This selected population has a basal phenotype, as determined by expression of CK5 and CK14 and lack of expression of the differentiation-specific markers prostate specific antigen (PSA) and prostatic acid phosphatase (PAP), and has a fourfold greater ability to form colonies in vitro than the total basal population. These putative stem cells are distinguished from other basal cells by their ability to generate prostate-like glands in vivo with morphologic and immuno-histochemical evidence of prostate-specific differentiation. These properties are consistent with a stem cell origin. Furthermore, the presence of surface integrins on prostate stem cells suggests that these cells share common pathways with stem cells in other tissues.
Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression
Anne T. Collins, Fouad K. Habib, Norman J. Maitland, David E. Neal; Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. J Cell Sci 1 November 2001; 114 (21): 3865–3872. doi: https://doi.org/10.1242/jcs.114.21.3865
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).