Cells of the monocyte/macrophage lineage are involved in the development of inflammatory joint diseases such as rheumatoid arthritis. This disease is characterized by cartilage degradation and synovial membrane inflammation with a progressive loss of joint function. The pathological processes are still not well understood. Therefore it would be interesting to develop a suitable experimental in vitro model system for defined studies of monocyte/macrophage and chondrocyte interactions at the molecular level. For that purpose we cocultured chondrocytes from adult human articular cartilage with human monocytes and macrophages for defined periods of time in agarose without addition of serum. We performed zymographic and western blot analysis of culture medium, completed by quantitative RT-PCR of each chondrocyte, monocyte and macrophage RNA, respectively. The reliability of the newly established coculture systems is confirmed by causing a clear decrease of intact aggrecan in the coculture medium plus concurrent appearance of additional smaller fragments and a reduction of chondrocyte aggrecan and collagen II gene expression in the presence of monocytes. In culture medium from cocultures we detected active forms of the matrix metalloproteinases MMP-1, MMP-3 and MMP-9 accompanied by induction of gene expression of MMP-1, membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in chondrocytes. No gene expression of MMP-9 was detectable in chondrocytes, the enzyme was solely expressed in monocytes and macrophages and was downregulated in the presence of chondrocytes. Our results suggest that MMP-9 protein in coculture medium originated from monocytes and macrophages but activation required chondrocyte-derived factors. Because addition of plasmin, a partial activator of pro-MMP-3 and pro-MMP-1, enhanced the activation of pro-MMP-9 and pro-MMP-1 in cocultures but not in monocultured macrophages, and the presence of MMP-3 inhibitor II prevented pro-MMP-9 activation, we assumed a stepwise activation process of pro-MMP-9 that is dependent on the presence of at least MMP-3 and possibly also MMP-1.
Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9)
Rita Dreier, Shona Wallace, Susanne Fuchs, Peter Bruckner, Susanne Grässel; Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J Cell Sci 1 November 2001; 114 (21): 3813–3822. doi: https://doi.org/10.1242/jcs.114.21.3813
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).