Microtubules play central roles in various cellular processes in eukaryotes. The dynamics and organisation of interphase microtubules and mitotic spindles are dramatically altered during the cell cycle and development. However, the molecular mechanisms underlying this dynamic behaviour remain to be understood. In recent years, a novel family of microtubule-associated proteins (MAPs), the Dis1/TOG family, has emerged as a versatile regulator of microtubule function. These MAPs are highly conserved in eukaryotes from yeasts and plants to humans. The localisation and function of these MAPs are not determined simply by their intrinsic microtubule-binding activity. Instead this family executes its diverse roles by interacting with other regulatory molecules, including microtubule motors and centrosomal proteins. The modular structure of these MAPs may allow them to interact with multiple proteins and thereby be involved in a wide variety of microtubule and spindle functions.

Movies available on-line

You do not currently have access to this content.