To examine the intracellular localization of neutral sphingomyelinase 1 (nSMase 1), a rabbit polyclonal antibody was raised against a recombinant form of the enzyme expressed in E. coli. It has been reported that, in rat liver or in ascites hepatoma AH7974, high activity of neutral sphingomyelinase (SMase) is found at the plasma membrane, with a lesser but significant amount in nucleus and cytoplasm. The biochemical properties, dithiothreitol requirement and high salt concentration dependency, of cloned and expressed nSMase 1 resemble those of previously described nuclear neutral SMase of AH7974. The present study was therefore focused on the nuclear localization of this enzyme. Western blotting of subcellular fractions using anti-rat nSMase 1 antibody revealed most nSMase 1 to be associated with the nuclei and some with microsomes, but not with plasma membranes. Consistently, neutral SMase activity in nuclear extract was immunoprecipitated by the antibody, while that of plasma membranes was not. The results indicate that nSMase 1 mainly resides in the nucleus and may thus differ from neutral SMase in plasma membrane. On gel-filtration column chromatography of nuclear extract, the profile of neutral SMase activity corresponded well with immunoreactive protein bands on western blotting, suggesting that a large part of nuclear neutral SMase may be nSMase 1. Removal of the nuclear envelope by treatment with Triton X-100 did not significantly decrease the amount of nuclear nSMase 1, and western blotting of subnuclear fractions (i.e. nuclear envelope, chromatin, and nuclear matrix) revealed nSMase 1 signal exclusively in the nuclear matrix. Immunocytochemistry with AH7974, as well as rat fibroblast cell line 3Y1, demonstrated nSMase 1 to be localized mainly in the nucleus, with some in the cytoplasm. Moreover, immuno-electron microscopy clearly showed the signal of nSMase 1 to be more dense in the nucleus than in the cytoplasm of AH7974.
Nuclear localization of neutral sphingomyelinase 1: biochemical and immunocytochemical analyses Available to Purchase
Yukiko Mizutani, Keiko Tamiya-Koizumi, Noriko Nakamura, Miya Kobayashi, Yoshio Hirabayashi, Shonen Yoshida; Nuclear localization of neutral sphingomyelinase 1: biochemical and immunocytochemical analyses. J Cell Sci 15 October 2001; 114 (20): 3727–3736. doi: https://doi.org/10.1242/jcs.114.20.3727
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option
Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.