In some individuals with autosomal dominant isolated growth hormone deficiency, one copy of growth hormone lacks amino acids 32-71 and is severely misfolded. We transfected COS7 cells with either wild-type human growth hormone or Δ32-71 growth hormone and investigated subcellular localization of growth hormone and other proteins. Δ32-71 growth hormone was retained in the endoplasmic reticulum, whereas wild-type hormone accumulated in the Golgi apparatus. When cells transfected with wild-type or Δ32-71 growth hormone were dually stained for growth hormone and the Golgi markers β-COP, membrin or 58K, wild-type growth hormone was colocalized with the Golgi markers, but β-COP, membrin and 58K immunoreactivity was highly dispersed or undetectable in cells expressing Δ32-71 growth hormone. Examination of α-tubulin immunostaining showed that the cytoplasmic microtubular arrangement was normal in cells expressing wild-type growth hormone, but microtubule-organizing centers were absent in nearly all cells expressing Δ32-71 growth hormone. To determine whether Δ32-71 growth hormone would alter trafficking of a plasma membrane protein, we cotransfected the cells with the thyrotropin-releasing hormone (TRH) receptor and either wild-type or Δ32-71 growth hormone. Cells expressing Δ32-71 growth hormone, unlike those expressing wild-type growth hormone, failed to show normal TRH receptor localization or binding. Expression of Δ32-71 growth hormone also disrupted the trafficking of two secretory proteins, prolactin and secreted alkaline phosphatase. Δ32-71 growth hormone only weakly elicited the unfolded protein response as indicated by induction of BiP mRNA. Pharmacological induction of the unfolded protein response partially prevented deletion mutant-induced Golgi fragmentation and partially restored normal TRH receptor trafficking. The ability of some misfolded proteins to block endoplasmic reticulum-to-Golgi traffic may explain their toxic effects on host cells and suggests possible strategies for therapeutic interventions.
Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic
Thomas K. Graves, Shilpa Patel, Priscilla S. Dannies, Patricia M. Hinkle; Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic. J Cell Sci 15 October 2001; 114 (20): 3685–3694. doi: https://doi.org/10.1242/jcs.114.20.3685
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).