The assembly and function of the mitotic spindle involve specific changes in the dynamic properties of microtubules. One such change results in the poleward flux of tubulin in which spindle microtubules polymerize at their kinetochore-attached plus ends while they shorten at their centrosome-attached minus ends. Since free microtubule minus ends do not depolymerize in vivo, the poleward flux of tubulin suggests that spindle microtubules are actively disassembled at or near their centrosomal attachment points. The microtubule-severing ATPase, katanin, has the ability actively to sever and disassemble microtubules and is thus a candidate for the role of a protein mediating the poleward flux of tubulin. Here we determine the subcellular localization of katanin by immunofluorescence as a pre-liminary step in determining whether katanin mediates the poleward flux of tubulin. We find that katanin is highly concentrated at centrosomes throughout the cell cycle. Katanin’s localization is different from that of γ-tubulin in that microtubules are required to maintain the centrosomal localization of katanin. Direct comparison of the localization of katanin and γ-tubulin reveals that katanin is localized in a region surrounding the γ-tubulin-containing pericentriolar region in detergent-extracted mitotic spindles. The centrosomal localization of katanin is consistent with the hypothesis that katanin mediates the disassembly of microtubule minus ends during poleward flux.

You do not currently have access to this content.