Neuroblastoma (NB) is a paediatric form of cancer derived from the sympathetic nervous system. Recent genome-wide sequencing data suggest that often NB does not have a clear genetic cause, leading the authors to hypothesize that NB results from aberrations of normal development. To test this hypothesis, Anna Philpott's group used a population of anteroventral noradrenergic (AVNA) cells from Xenopus embryos. These cells share several features with mammalian sympathetic neurons, including the expression of noradrenergic-associated genetic markers such as the achaete-scute complex-like 1 (Ascl1) gene, which encodes a transcriptional driver of neurogenesis. By comparing AVNA and NB cells, the authors found that, whereas Ascl1 is only transiently expressed in AVNA cells, it is aberrantly maintained in NB, where it is phosphorylated on multiple serine-proline sites. The authors then show that differentiation of AVNA cells is enhanced by dephosphorylated Ascl1. Moreover, this process is inhibited by experimental manipulations of NB-associated genes, but, interestingly, dephosphorylation of Ascl1 is able to overcome this inhibition. This work demonstrates that Xenopus AVNA cells represent a unique system to study sympathetic nervous system development and its relationship to NB. Moreover, it suggests that Asc11 phosphorylation might promote stalled differentiation leading to NB, thus identifying a potential target for therapeutic purposes. Page 429
Xenopus as a developmental model of neuroblastoma
Xenopus as a developmental model of neuroblastoma. Dis Model Mech 1 May 2015; 8 (5): e0502. doi:
Download citation file:
Advertisement
Cited by
DMM Journal Meeting 2024: Pre-clinical Modelling of Human Genetic Disease and Therapy

Registration is now open for our 2024 Journal Meeting. Rapid advances in gene editing and genetic technologies have revolutionised our ability to model human genetic disease and provided new hope for gene therapies. At this Meeting, we will present the very latest advances in modelling human genetic disease.
Moving towards heart success – Disease Models & Mechanisms Special Issue

DMM's most recent special issue compiles articles that aim to move heart failure to heart success by fundamentally addressing the roots of failure to identify curative strategies.
Crossroads in Virology

Our October Editorial written by Sumana Sanyal emphasises the urgency of a concerted effort in understanding virus–host interactions to inform the development of therapeutics and vaccines, helping to predict disease outcomes. Read the full Editorial here.
A Model for Life - an interview with Professor Kiran Musunuru




Read our new A Model for Life interview with Kiran Musunuru. Prof Musunuru investigates the mechanisms of disease in model systems, with the ultimate goal of developing innovative gene editing therapies.
Sustainable Conferencing Initiative

Through our Sustainable Conferencing Grants, we promote the use of new technology and greener modes of travel. Our blog posts showcase examples of sustainability in action and share experience about how new technologies and conference formats work in practice.
Other journals from
The Company of Biologists